47 research outputs found

    Number skills and knowledge in children with specific language impairment

    Get PDF
    The number skills of groups of 7 to 9 year old children with specific language impairment (SLI) attending mainstream or special schools are compared with an age and nonverbal reasoning matched group (AC), and a younger group matched on oral language comprehension. The SLI groups performed below the AC group on every skill. They also showed lower working memory functioning and had received lower levels of instruction. Nonverbal reasoning, working memory functioning, language comprehension, and instruction accounted for individual variation in number skills to differing extents depending on the skill. These factors did not explain the differences between SLI and AC groups on most skills

    The role of language in mathematical development: Evidence from children with specific language impairments

    Get PDF
    A sample (n=48) of eight year olds with Specific Language Impairments is compared with age-matched (n=55) and language matched controls (n=55) on a range of tasks designed to test the interdependence of language and mathematical development. Performance across tasks varies substantially in the SLI group, showing profound deficits in production of the count word sequence and basic calculation and significant deficits in understanding of the place-value principle in Hindu-Arabic notation. Only in understanding of arithmetic principles does SLI performance approximate that of age-matched-controls, indicating that principled understanding can develop even where number sequence production and other aspects of number processing are severely compromised

    Improving preschoolers' number foundations

    Get PDF
    Mathematical competence is crucial for educational and financial success in modern societies. There is currently debate whether mathematical abilities later on in life depend on symbolic knowledge, such as counting abilities and digit recognition, or whether they rely upon non-symbolic knowledge, such as the ability to discriminate between large magnitudes that rely upon the approximate number sense (ANS). However, it is unclear whether symbolic abilities rely on non-symbolic ones (one-representation view) or whether symbolic and non-symbolic abilities are distinct systems (dual-representation view). Knowing what abilities predict mathematical success later on in life is important for the development of economically valid and efficient educational programmes, especially for those children who perform low on mathematical ability tasks or low achievers (LA). Our previous studies had shown that specially developed PLUS games, which target ANS abilities and require children to guess and see where is “more” or “less” very quickly, improved typically developing preschooler’s ANS abilities. However, it was unclear how the PLUS games compared to other training programmes, for example those that target symbolic knowledge, and whether the PLUS programme would benefit children who perform low on mathematical ability tasks. In this study we first examined which children performed low on mathematical ability tasks. Next, we compared the impact of two different training programmes on LA children’s ANS knowledge, their symbolic knowledge, and their mathematical abilities in general. One of the training programmes focused on nonsymbolic abilities using PLUS games, which targeted children’s ANS abilities, and the other programme included DIGIT games that targeted symbolic knowledge and focused on children’s counting abilities and digit knowledge. We included preschoolers as they would have received little formal education so far and thus have limited symbolic knowledge. In addition, we targeted those preschoolers who were performing below average on mathematical ability tasks and who had low ANS abilities. The inclusion of children who had both little symbolic and non-symbolic abilities allowed us to examine the foundations of mathematical abilities and to observe which training programme would benefit children’s general mathematical outcomes most. We predicted that if ANS abilities form the basis of mathematical abilities then children in the PLUS group would improve more than those in the DIGIT group. However, if non-symbolic and symbolic knowledge are two distinct systems then children in the DIGIT group should show improved mathematical abilities. Our results showed that, although there are a number of reasons why preschoolers perform low on mathematical ability tasks, most children identified as LA had low ANS abilities as well. This confirms results in previous studies that have found that ANS abilities are important for children’s mathematical abilities. The results from the training study showed that both training groups improved equally on a number of mathematical ability tasks that assess symbolic knowledge, including counting abilities, digit recognition, and understanding of counting as well as those that require non-symbolic knowledge, including ANS abilities. Finally, both groups showed improved general mathematical abilities and over 50% of LA children were no longer considered as low achievers on mathematical ability tasks six months later. Therefore, the current results suggest that LA preschoolers benefit from playing daily mathematical games that target both non-symbolic abilities, the PLUS games, as well as symbolic ones, the DIGIT games. In addition, there is a complex interaction between symbolic, non-symbolic abilities, and mathematical cognition in preschoolers in that children who played DIGIT games also showed improved nonsymbolic abilities. Future studies should examine longitudinal outcomes and assesses which LA children continue to show mathematical difficulties or whether the training programmes benefit LA children long term. In addition, larger controlled trials are needed to verify the current findings. Based upon the current results we would recommend that all preschool children engage in daily games that support mathematical development, including both PLUS and DIGIT games, as this will allow LA children to reach their full potential

    Basic calculation proficiency and mathematics achievement in elementary school children

    Get PDF
    The relation between skill in simple addition and subtraction and more general math achievement in elementary school is well established but not understood. Both the intrinsic importance of skill in simple calculation for math and the influence of conceptual knowledge and cognitive factors (working memory, processing speed, oral language) on simple calculation and math are plausible. The authors investigated the development of basic calculation fluency and its relations to math achievement and other factors by tracking a group of 259 United Kingdom English children from second to third grade. In both grades the group did not retrieve the solutions to most problems, but their math achievement was typical. Improvement in basic calculation proficiency was partially predicted by conceptual knowledge and cognitive factors. These factors only partially mediated the relation between basic calculation and math achievement. The relation between reading and math was wholly mediated by number measures and cognitive factors

    Biodiversity Offsets: A Cost-Effective Interim Solution to Seabird Bycatch in Fisheries?

    Get PDF
    The concept of biodiversity offsets is well established as an approach to environmental management. The concept has been suggested for environmental management in fisheries, particularly in relation to the substantial numbers of non-target species—seabirds in particular—caught and killed as incidental bycatch during fishing activities. Substantial areas of fisheries are being closed to protect these species at great cost to the fishing industry. However, other actions may be taken to offset the impact of fishing on these populations at lower cost to the fishing industry. This idea, however, has attracted severe criticism largely as it does not address the underlying externality problems created by the fishing sector, namely seabird fishing mortality. In this paper, we re-examine the potential role of compensatory mitigation as a fisheries management tool, although from the perspective of being an interim management measure while more long-lasting solutions to the problem are found. We re-model an example previously examined by both proponents and opponents of the approach, namely the cost effectiveness of rodent control relative to fishery area closures for the conservation of a seabird population adversely affected by an Australian tuna fishery. We find that, in the example being examined, invasive rodent eradication is at least 10 times more cost effective than area closures. We conclude that, while this does not solve the actual bycatch problem, it may provide breathing space for both the seabird species and the industry to find longer term means of reducing bycatch

    Estimating illegal fishing from enforcement officers

    Get PDF
    While illegal, unreported, and unregulated (IUU) fishing is a premier issue facing ocean sustainability, characterizing it is challenging due to its clandestine nature. Using Chile as an example, researchers present a structured process leveraging existing capacity, fisheries officers, that provides a monitoring tool to produce transparent and stand-alone estimates on the level, structure, and characteristics of illegal fishing

    The critical role of Arabic numeral knowledge as a longitudinal predictor of arithmetic development

    Get PDF
    Understanding the cognitive underpinnings of children's arithmetic development has great theoretical and educational importance. Recent research suggests symbolic and nonsymbolic representations of number influence arithmetic development before and after school entry. We assessed nonverbal ability and general language skills as well as nonsymbolic (numerosity) and symbolic (numeral) comparison skills, counting, and Arabic numeral knowledge (numeral reading, writing, and identification) in preschool children (4 years of age). At 6 years of age, we reassessed nonsymbolic (numerosity) and symbolic (numeral) comparison and arithmetic. A latent variable path model showed that Arabic numeral knowledge (defined by numeral reading, writing, and identification at 4 years of age) was the sole unique predictor of arithmetic at 6 years. We conclude that knowledge of the association between spoken and Arabic numerals is one critical foundation for the development of formal arithmetic

    Development of a networked photonic‐enabled staring radar testbed for urban surveillance

    Get PDF
    Urban surveillance of slow-moving small targets such as drones and birds in low to medium airspace using radar presents significant challenges. Detecting, locating and identifying such low observable targets in strong clutter requires both innovation in radar hardware design and optimisation of processing algorithms. To this end, the University of Birmingham (UoB) has set-up a testbed of two L-band staring radars to support performance benchmarking using datasets of target and clutter from realistic urban environment. This testbed is also providing the vehicle to understand how novel radar architectures can enhance radar capabilities. Some of the challenges in installing the radar at the UoB campus are highlighted. Detailed benchmarking results are provided from urban monostatic and bistatic field trials that form the basis for performance comparison against future hardware modification. The solution to the challenge of interfacing the radar to the external oscillators is described and stand-alone bench tests with the candidate oscillators are reported. The testbed provides a valuable capability to undertake detailed analysis of performance of Quantum photonic-enabled radar and allows for its comparison with conventional oscillator technology for surveillance of low observable targets in the presence of urban clutter
    corecore